logo
CAE应用解决方案专家
400 - 6046 - 636

有限元仿真分析中的隐式与显式有限元算法

有限元: 2017-08-17 09:47:42 阅读数: 6976 分享到:

 有限元仿真分析中,隐式与显式有限元最大的区别在于是否迭代,是否所有的物理量在同一时刻获得。采用隐式迭代求解平衡方程(位移、速度和加速度)、而不管是否用隐式与显式的方法(前向或者后向欧拉求解方法)求解本构方程(应力和应变)叫做隐式有限元;用显式时间积分的方法求解叫做显式有限元。

深圳市有限元科技有限公司是一家有十年有限元分析项目经验的高科技企业,公司代理国外多款着名有限元软件,并提供软件的销售与培训业务,另研发出多款行业有限元通用软件,并秉承以最高质量的产品和最高质量的服务满足客户的各种需求的服务理念,致力于为客户提供一站式有限元整体解决方案,目前已为全国超过500家企业提供有限元分析服务。如需购买有限元软件或咨询服务请联系电话:13632683051,咨询QQ:4006046636。

 今天,有限元科技小编跟大家分享的是:有限元仿真分析中的隐式与显式有限元算法。

 首先,有限元科技小编认为,对于本构方程的求解,通常分为前向和后向欧拉算法。

 对于后向欧拉算法求解弹塑性问题,所有的物理量(包括等效塑性应变增量、N+1迭代步的应变和应力以及相关依赖于solution的状态变量)均是同时求解获得,因为涉及到多个物理量,而通常情况下他们是相互依赖、相互成为函数,所以必须www.featech.com.cn通过牛顿迭代同时求解几个方程(如采用试应力方程、屈服函数径向返回算法(对于各向异性,也叫回映算法,最近点的投射算法)联合求解等效塑性应变增量)。对于前向欧拉,直接由N时刻的应力和应变求出N+1时刻的应力和应变,无需迭代。


有限元仿真分析中的隐式与显式有限元算法

 其次,对于平衡方程的求解,通常分为隐式和显式有限元算法。

 对于隐式有限元算法,由应力平衡方程+边界条件变分之后获得的刚度方程KU=F,隐式求解必须引入雅可比矩阵(二次收敛、只影响计算速率、不影响数值精度;K又称为雅可比),其是实时更新的,是N+1时刻的应力、应变以及状态变量(如损伤内变量)的函数,隐式求解是很robust的,确保了计算精度,但是不足之处在于计算非常expensive,每次迭代都要计算K的逆矩阵,也容易产生数值收敛性问题,目前解决的方法有弧长法、粘性阻尼法等,有限元科技小编认为粘性阻尼法效果最好。

 对于显示算法,采用时间积分,用t+1时刻的积分点应力、应变,获得t+1时刻的节点位移,无需迭代求解,也不需要雅可比矩阵(应力对应变偏导数);如果硬是要有,连续雅可比,基于本构模型而不是刚度方程推导近似的连续雅可比。对于显示算法,单元高斯积分点应力、应变的求解可用前向或者后向欧拉方法,www.featech.com.cn然后通过时间积分求取节点位移。本质上,平衡方程中位移的迭代求解与本构方程中的应力、应变求解没有关联,这点很容易造成误解,很多时候将前、后欧拉算法视为显式和隐式的区别,大大错误。通常应用较广的显示算法纽马克法、威尔逊-sita法,其中改变纽马克法中的两个参数,可以实现隐式与显式求解,其中alpha=0.5和beta=0是中心差分法(二阶精度)。目前一个大的误区认为只有显示算法可以求解动力学问题,www.featech.com.cn隐式只能求解准静态问题(如低速冲击),alpha=0.5和beta=0.25就是隐式,所有的物理量在t+1时刻同时求解,通常Abaqus软件中所说的隐式动力学求解采用了斯坦福大学Hilber、HUGHES院士(现在德克萨斯大学奥斯丁分校)和加州大学伯克利分校Taylor院士提出的无条件稳定隐式差分算法,可以求解低速动力学问题,缺点是不适合含阻尼的求解、计算效率不高;alpha=0.5和beta=0时的纽马克法更适合求解动力学问题,主要原因在于比隐式求解计算效率更高,不足之处在于其是条件稳定,时间增量过大位移解容易震荡,根本原因是差分算法的条件稳定导致的,时间增量必须非常小(其值越大,一方面不稳定、另一方面计算误差也更大),其依赖于波速、弹性模量和最小单元网格尺寸www.featech.com.cn,这是显式算法计算最耗时的地方。相对于隐式算法,显式算法的功能更强大,通常计算依赖于率的变形和应力,也可以求解稳态问题,如alpha=0.5和beta=0时,对于刚度方程中引入阻尼矩阵后,叫做动态松弛法,可以解决静力学问题的一些稳态问题(如重力、预应力引起的初始应力)。此外,一些准静态的剪切自锁问题,本质上有解,但是用牛顿法求解失效,中心差分引入质量矩阵后,可以获得正常的解。需要注意的是,时间积分算法通常采用Lumped集中对角质量矩阵而不是一致质量矩阵,以提高计算效率。总体来说,由于计算效率的问题,隐式时间积分算法Abaqus-Standard特别适合于低速冲击问题;对于高速冲击问题,由于存在不连续非线性接触的动响应过程,隐式算法解决不好,使用显式时间算法Abaqus-Explicit更好。此外,对于瞬态和稳态热传导问题,半离散的抛物线方程,中心差分法可以较好获得温度分布。

 对于依赖于率的粘塑性问题(对于本质上的粘性材料),与弹塑性材料的根本区别在于,一般来说是一致性条件不满足(排除弹塑性材料在高温下的软化问题,对于这种问题,屈服条件也可以满足),即屈服条件不满足,N+1时刻的物理量不用回映到N+1时刻的屈服面上,粘塑性模型成为过应力模型,显示和隐式算法都可以求解。对于依赖于率的本构模型,其可解决模拟高速冲击、爆炸、弹道射击问题时存在的动态应变局部化问题(对于动态问题,平衡方程丧失双曲线特性;对于静态问题,平衡方程失去椭圆性),解决网格尺寸效应,其实质上是引入了适当的阻尼迟滞效应。需要注意的是,对于大变形(又称为有限变形)问题,Cauchy应力率和速度梯度(包括客观和对称的扭曲张量率D、不客观和反对称的spin旋转张量W两个部分)均是不客观的,为解释刚体旋转(如纯剪切变形就包含刚体旋转),在共旋坐标系下面求解真实应力和应变,应力和应变积分求解的时候应首先求解客观性的Jaumann应力率(相对于真实应力,空间坐标系),相对于SecondPiola-Kirchhoff应力是Truesdell率(材料坐标系)。Abaqus软件对于大变形问题已经做了旋转。


有限元仿真分析中的隐式与显式有限元算法

 对于一些耦合场问题,由于计算量非常大,同时要求解太多物理量,如热-流-固耦合,要求解位移、压力、温度,采用纯隐式算法或显式算法基本不太获得收敛或准确的解,这时候可采用混合的隐式与显式有限元格式mixedimplicit-explicitpartitoning方法,将刚度矩阵和阻尼矩阵分成两个部分,在同一区域采取不同算法,提高计算效率和精度、稳定性和收敛性。

 深圳市有限元科技有限公司是Abaqus软件的一级代理商,并代理国外其他多款cae软件,有限元科技是以工程仿真软件开发为核心,集cae咨询、cae培训、cae软件研发与销售为一体的高科技企业。公司秉承以最高质量的产品和最高质量的服务满足客户的各种需求的服务理念,致力于为客户提供一站式cae整体解决方案,目前已为全国超过500家企业提供cae分析服务。


 本文出自深圳有限元科技有限公司官网:www.featech.com.cn 转载请注明